Devoir Maison 2

Pour le 6 octobre 2025

Exercice

(adapté de EDHEC ECS 2020)

Dans tout l'exercice, on désigne par E un \mathbb{R} -espace vectoriel de dimension n ($n \ge 2$).

Partie I — Préliminaires

- 1. On considère un projecteur p de E, c'est-à-dire un endomorphisme de E tel que $p \circ p = p$.
 - (a) Montrer que $E = \text{Ker}(p) \bigoplus \text{Im}(p)$
 - (b) Établir que Im(p) = Ker(Id p)
 - (c) Notons r = Rang(p). Montrer qu'il existe une base (e_1, \dots, e_n) une base de E telle que

$$\forall k \in [1, r], \quad p(e_k) = e_k, \qquad \forall k \in [r+1, n], \quad p(e_k) = 0_E$$

- (d) En écrivant la matrice de p dans la base (e_1, \dots, e_n) , montrer que Rg(p) = Tr(p)
- 2. Montrer par récurrence sur k ($k \in \mathbb{N}^*$) que, si E_1, \ldots, E_k sont des sous-espaces vectoriels de E, alors on a l'inégalité :

$$\dim(E_1 + \dots + E_k) \leq \dim(E_1) + \dots + \dim(E_k)$$

Partie II — C.N.S. pour qu'une somme de projecteurs soit un projecteur

Soit p_1 et p_2 deux projecteurs de E et $q = p_1 + p_2$. Le but de cette partie est de déterminer une condition nécessaire et suffisante sur p_1 et p_2 pour que $q = p_1 + p_2$ soit un projecteur.

1. Montrer que, si $p_1 \circ p_2 = p_2 \circ p_1 = 0_{\mathcal{L}(E)}$ alors q est un projecteur.

On suppose désormais que q est un projecteur.

- 2. (a) Montrer que $\operatorname{Im}(q) \subset \operatorname{Im}(p_1) + \operatorname{Im}(p_2)$
 - (b) Justifier que $Rang(q) = Rang(p_1) + Rang(p_2)$ et que

$$\dim(\operatorname{Im}(p_1) + \operatorname{Im}(p_2)) \leqslant \dim(\operatorname{Im}(p_1)) + \dim(\operatorname{Im}(p_2))$$

- (c) En déduire que $\operatorname{Im}(q) = \operatorname{Im}(p_1) + \operatorname{Im}(p_2)$ puis que $\operatorname{Im}(p_1 + p_2) = \operatorname{Im}(p_1) \bigoplus \operatorname{Im}(p_2)$
- 3. (a) Soit $x \in E$, montrer que $p_1(x) \in \text{Ker}(q \text{Id})$.
 - (b) En déduire que $q \circ p_1 = p_1$ et $q \circ p_2 = p_2$.
 - (c) En déduire qu'alors $p_2 \circ p_1 = 0_{\mathcal{L}(E)}$ et $p_1 \circ p_2 = 0_{\mathcal{L}(E)}$
- 4. Conclure

Partie III — Généralisation

Soit un entier naturel k supérieur ou égal à 2. On considère des projecteurs de E, notés p_1, p_2, \ldots, p_k et on note $q_k = p_1 + p_2 + \ldots + p_k$. On veut généraliser le résultat précédente à une somme de $k \ge 2$ projecteurs.

1. Montrer que si, pour tout couple (i,j) de $[\![1,k]\!]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$, alors q_k est un projecteur.

On suppose dans toute la suite que q_k est un projecteur et on souhaite montrer que, pour tout couple (i,j) de $[\![1,k]\!]^2$ tel que $i\neq j$, on a $p_i\circ p_j=0_{\mathcal{L}(E)}$.

- 2. (a) Montrer que $\operatorname{Im}(q_k)$ est inclus dans $\operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$.
 - (b) Établir, grâce aux résultats de la partie 1, que $\operatorname{Rang}(q_k) = \dim(\operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k))$, puis en déduire que $\operatorname{Im}(q_k) = \operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$.
 - (c) Établir finalement l'égalité

$$\operatorname{Im}(q_k) = \operatorname{Im}(p_1) \bigoplus \ldots \bigoplus \operatorname{Im}(p_k)$$

- 3. (a) Montrer que, pour tout j de $[\![1,k]\!],$ on a l'égalité $q_k\circ p_j=p_j.$
 - (b) En déduire que, pour tout j de [1, k], on a : $\forall x \in E$, $\sum_{\substack{i=1 \ i \neq j}}^k p_i\left(p_j(x)\right) = 0$.
 - (c) Montrer alors que, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$.
- 4. Conclure quant à l'objectif de cette partie.

Corrigé

Corrigé de l'exercice

Partie I — Préliminaires

1. (a) Soit $x \in \text{Ker}(p) \cap \text{Im}(p)$. Il existe ainsi $y \in E$ tel que x = p(y).

De plus on a

$$0_E = p(x) = p \circ p(y) = p(y) = x$$

On en déduit que $Ker(p) \cap Im(p) = \{0_E.$

D'après le théorème du rang on a $\dim(\operatorname{Ker}(p)) + \dim(\operatorname{Im}(p)) = \dim(E)$.

En conclusion on a $E = \text{Ker}(p) \bigcap \text{Im}(p)$.

(b) On va procéder par double inclusion

— Soit $x \in \text{Im}(p)$, il existe alors $y \in E$ tel que x = p(y).

$$(\mathrm{Id} - p)(x) = x - p(x) = p(y) - p \circ p(y) = p(y) - p(y) = 0_E$$

Et donc $x \in \text{Ker}(\text{Id} - p)$.

Ce qui montre que $\operatorname{Im}(p) \subset \operatorname{Ker}(\operatorname{Id} - p)$

— Soit maintenant $x \in \text{Ker}(Id - p)$, on a donc p(x) = x. Ainsi $x \in \text{Im}(p)$.

Ceci montre que $Ker(Id - p) \subset Im(p)$.

Finalement on a bien $|\operatorname{Im}(p) = \operatorname{Ker}(\operatorname{Id} - p)$.

(c) Soit (e_1, \dots, e_r) une base de $\operatorname{Im}(p) = \operatorname{Ker}(\operatorname{Id} - p)$ et $(e_{r_1} \dots e_p)$ une base de $\operatorname{Ker}(p)$.

D'après les questions précédentes on a

$$E = \operatorname{Ker}(\operatorname{Id} - p) \bigoplus \operatorname{Ker}(p)$$

Ainsi la famille (e_1, \dots, e_p) obtenue par concatenation est une base de E (et en particulier p = n).

On sait que

$$\forall k \in [1, r], e_k \in \text{Ker}(\text{Id} - p), \quad \forall k \in [r + 1, n], e_k \in \text{Ker}(p)$$

C'est-à-dire

$$\forall k \in [\![1,r]\!], \quad e_k \in \mathrm{Ker}(\mathrm{Id}-p), \qquad \forall k \in [\![r+1,n]\!], \quad e_k \in \mathrm{Ker}(p)$$
 dire
$$\boxed{ \forall k \in [\![1,r]\!], \quad p(e_k) = e_k, \qquad \forall k \in [\![r+1,n]\!], \quad p(e_k) = 0_E }$$

(d) Notons $\mathcal{B} = (e_1, \dots, e_n)$, on a alors

D'où

$$\operatorname{Tr}(p) = \operatorname{Tr}(\operatorname{Mat}_{\mathcal{B}}(p)) = \dim(\operatorname{Ker}(\operatorname{Id} - p)) = \dim(\operatorname{Im}(p)) = \operatorname{rg}(p)$$

On obtient bien
$$Rg(p) = Tr(p)$$
.

2. On va procéder par récurrence sur n

Initialisation:

Il est clair que $\dim(E_1) \leq \dim(E_1)$

Hérédité:

Soit $k \in \mathbb{N}$, et $E_1, \ldots, E_k, E_{k+1}$ des sous-espaces vectoriels de E. On suppose que

$$\dim(E_1 + \dots + E_k) \leqslant \dim(E_1) + \dots + \dim(E_k)$$

Notons $F = E_1 + \cdots + E_k$.

Soit (e_1, \dots, e_n) une base de F et (f_1, \dots, f_p) une base de E_{k+1} . Alors la famille $(e_1, \dots, e_n, f_1, \dots, f_p)$ est une famille génératrice de $F + E_{k+1}$.

On a alors

$$\dim(F + E_{k+1}) \leqslant \operatorname{Card}(e_1, \dots, e_n, f_1, \dots, f_p) \leqslant n + p$$

Ainsi

$$\dim(F + E_{k+1}) \leq \dim(F) + \dim(E_{k+1}) \leq \dim(E_1) + \dots + \dim(E_k) + \dim(E_{k+1})$$

Ce qui prouve la propriété voulue au rang k+1.

Remarque -

On aurait aussi pu utiliser la formule de Grassman appliquée à F et E_{k+1} pour prouver l'hérédité

Par principe de récurrence on a montré que

si E_1, \ldots, E_k , sont des sous-espaces vectoriels de E alors

$$\dim(E_1 + \dots + E_k) \leqslant \dim(E_1) + \dots + \dim(E_k)$$

Partie II — C.N.S. pour qu'une somme de deux projecteurs soit un projecteur

1. On suppose que $p_1 \circ p_2 = p_2 \circ p_1 = 0_{\mathcal{L}(E)}$, on a alors

$$q \circ q = (p_1 + p_2) \circ (p_1 + p_2)$$

$$= p_1 \circ p_1 + p_1 \circ p_2 + p_2 \circ p_1 + p_2 \circ p_2$$

$$= p_1 \circ p_1 + p_2 \circ p_2 \qquad par \ hypoth\`{e}se$$

$$= p_1 + p_2 \qquad car \ p_1 \ et \ p_2 \ sont \ des \ projecteurs$$

$$= q$$

Ainsi $q \circ q = q$, q est donc bien un projecteur.

- 2. On suppose désormais que q est un projecteur.
 - (a) Soit $y \in \text{Im}(q)$, il existe donc $x \in E$ tel que y = q(x).

Ainsi $y = p_1(x) + p_2(x)$. Comme $p_1(x) \in \text{Im}(p_1)$ et $p_2(x) \in \text{Im}(p_2)$ on a donc $y \in \text{Im}(p_1) + \text{Im}(p_2)$

On a ainsi montré que

$$\operatorname{Im}(q) \subset \operatorname{Im}(p_1) + \operatorname{Im}(p_2)$$

(b) On sait que q, $_1$ et p_2 sont des projecteurs, ainsi, d'après la question 1.(d) de la partie I on a Rang(q) = Tr(q), $Rang(p_1) = Tr(p_1)$ et $Rang(p_2) = Tr(p_2)$.

D'où

$$\begin{split} \operatorname{Rang}(q) &= \operatorname{Tr}(q) \\ &= \operatorname{Tr}(p_1 + p_2) \\ &= \operatorname{Tr}(p_1) + \operatorname{Tr}(p_2) \quad \textit{car l'application Trace est linéaire} \\ &= \operatorname{Rang}(p_1) + \operatorname{Rang}(p_2) \end{split}$$

Ainsi

$$\operatorname{Rang}(q) = \operatorname{Rang}(p_1) + \operatorname{Rang}(p_2)$$

La question 2. de la partie I appliquée aux sous-espaces vectoriels $\mathrm{Im}(p_1)$ et $\mathrm{Im}(p_2)$ nous assure que

$$\dim(\operatorname{Im}(p_1) + \operatorname{Im}(p_2)) \leqslant \dim(\operatorname{Im}(p_1)) + \dim(\operatorname{Im}(p_2))$$

(c) On sait déjà que $\operatorname{Im}(q) \subset \operatorname{Im}(p_1) + \operatorname{Im}(p_2)$, il nous suffit donc de montrer que $\operatorname{dim}(\operatorname{Im}(q)) = \operatorname{dim}(\operatorname{Im}(p_1) + \operatorname{Im}(p_2))$.

Comme $\operatorname{Im}(q) \subset \operatorname{Im}(p_1) + \operatorname{Im}(p_2)$ alors $\operatorname{dim}(\operatorname{Im}(q)) \leqslant \operatorname{dim}(\operatorname{Im}(p_1) + \operatorname{Im}(p_2))$

De plus on a

$$\dim(\operatorname{Im}(q)) = \operatorname{Rang}(q)$$

$$= \operatorname{Rang}(p_1) + \operatorname{Rang}(p_2)$$

$$= \dim(\operatorname{Im}(p_1)) + \dim(\operatorname{Im}(p_2))$$

$$\geqslant \dim(\operatorname{Im}(p_1) + \operatorname{Im}(p_2))$$

On en déduit alors que $\dim(\operatorname{Im}(q)) = \dim(\operatorname{Im}(p_1) + \operatorname{Im}(p_2))$ et donc que

$$Im(q) = Im(p_1) + Im(p_2)$$

Par conséquent on a $\dim(\operatorname{Im}(p_1))+\dim(\operatorname{Im}(p_2))=\dim(\operatorname{Im}(q))=\dim(\operatorname{Im}(p_1))+\dim(\operatorname{Im}(p_2))$ et ainsi

$$\left| \operatorname{Im}(p_1 + p_2) = \operatorname{Im}(p_1) \bigoplus \operatorname{Im}(p_2) \right|$$

3. (a) Soit $x \in E$, comme q est un projecteur on a Ker(q - Id) = Im(q).

Or
$$p_1(x) \in \operatorname{Im}(p_1) \subset \operatorname{Im}(p_1) \bigoplus \operatorname{Im}(p_2) = \operatorname{Im}(q)$$
. Ainsi

$$p_1(x) \in \operatorname{Ker}(q - \operatorname{Id})$$

(b) On a montré que, pour tout $x \in E$, $p_1(x) \in \text{Ker}(q - \text{Id})$, c'est-à-dire que

$$\forall x \in E, \qquad q(p_1(x)) - p_1(x) = 0_E$$

Ainsi

$$\forall x \in E, \qquad (q \circ p_1)(x) = p_1(x)$$

C'est-à-dire

$$q \circ p_1 = p_1$$

En reprenant ces arguments en remplaçant p_1 par p_2 on prouve mutatis mutandis que

$$|q \circ p_2 = p_2|$$

(c) On a

$$p_1 = q \circ p_1 = (p_1 + p_2) \circ p_1 = p_1 \circ p_1 + p_2 \circ p_1 = p_1 + p_2 \circ p_1$$

Ainsi $p_1 \circ p_2 = 0_{\mathcal{L}(E)}$ De même

$$p_2 = q \circ p_2 = (p_1 + p_2) \circ p_2 = p_1 \circ p_2 + p_2 \circ p_2 = p_1 \circ p_2 + p_2$$

et donc $p_2 \circ p_1 = 0_{\mathcal{L}(E)}$.

Finalement on a bien

$$p_2 \circ p_1 = 0_{\mathcal{L}(E)}$$
 et $p_1 \circ p_2 = 0_{\mathcal{L}(E)}$

4. On a montré que, si $p_1 \circ p_2 = p_2 \circ p_1 = 0_{\mathcal{L}(E)}$ alors q est un projecteur et que, si q est un projecteur alors $p_1 \circ p_2 = p_2 \circ p_1 = 0_{\mathcal{L}(E)}$.

On en conclut donc que

q est un projecteur si et seulement si $p_1 \circ p_2 = p_2 \circ p_1 = 0_{\mathcal{L}(E)}$

Partie III — Généralisation

1. On suppose que, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$. On a alors

$$q_k \circ q_k = \left(\sum_{i=1}^k p_i\right) \circ q_k$$

$$= \sum_{i=1}^k p_i \circ q_k$$

$$= \sum_{i=1}^k p_i \circ \left(\sum_{j=1}^k p_j\right)$$

$$= \sum_{i=1}^k \sum_{j=1}^k p_i \circ p_j$$

$$= \sum_{i=1}^k p_i \circ p_i + \sum_{i=1}^k \sum_{\substack{j=1 \ j \neq i}}^k p_i \circ p_j$$

$$= \sum_{i=1}^k p_i + \sum_{i=1}^k \sum_{\substack{j=1 \ j \neq i}}^k 0_{\mathcal{L}(E)}$$

$$= q_k + 0_{\mathcal{L}(E)}$$

$$= q_k$$

On a donc $q_k \circ q_k = q_k$. q_k est donc un projecteur.

2. (a) Soit $x \in \text{Im}(q_k)$, et soit $y \in E$ tel que $x = q_k(y)$.

On a alors

$$x = q_k(y) = \sum_{i=1}^n p_i(y)$$

Ainsi $x \in \operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$.

On a donc bien

$$\operatorname{Im}(q_k) \subset \operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$$

(b) On a

$$\operatorname{rg}(q_k) = \dim(\operatorname{Im}(q_k)) \leqslant \dim\left(\sum_{i=1}^k \operatorname{Im}(p_i)\right)$$

De plus, comme q_k et les applications linéaires $(p_i)_{i\in [\![1,k]\!]}$ sont des projecteurs, on a, d'après la question 1.(c)

$$\operatorname{rg}(q_k) = \operatorname{Tr}(q_k)$$

$$= \operatorname{Tr}\left(\sum_{i=1}^k p_i\right)$$

$$= \sum_{i=1}^k \operatorname{Tr}(p_i)$$

$$= \sum_{i=1}^k \operatorname{rg}(p_i)$$

$$= \sum_{i=1}^k \dim(\operatorname{Im}(p_i))$$

$$\geqslant \dim\left(\sum_{i=1}^k \operatorname{Im}(p_i)\right) \qquad d'après \ la \ question \ 2.$$

On a ainsi montré que

$$rg(q_k) = \dim \left(Im(p_1) + \ldots + Im(p_k) \right)$$

On sait que $\operatorname{Im}(q_k) \subset \operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$ et

$$\dim (\operatorname{Im}(q_k)) = \dim (\operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k))$$

Ainsi

$$Im(q_k) = Im(p_1) + \ldots + Im(p_k)$$

(c) On a vu que

$$\operatorname{rg}(q_k) = \dim \left(\sum_{i=1}^k \operatorname{Im}(p_i)\right) \leqslant \sum_{i=1}^k \dim(\operatorname{Im}(p_i)) \leqslant \operatorname{rg}(q_k)$$

Ainsi

$$\dim\left(\sum_{i=1}^{k}\operatorname{Im}(p_{i})\right) = \sum_{i=1}^{k}\dim(\operatorname{Im}(p_{i}))$$

La somme $\mathrm{Im}(p_1)+\ldots+\mathrm{Im}(p_k)$ est donc une somme directe, d'où

$$\boxed{\operatorname{Im}(q_k) = \operatorname{Im}(p_1) \bigoplus \ldots \bigoplus \operatorname{Im}(p_k)}$$

3. (a) Soit $j \in [1, k]$.

D'après la question précédente on a

$$\operatorname{Im}(p_j) \subset \operatorname{Im}(p_1) \bigoplus \ldots \bigoplus \operatorname{Im}(p_k) \subset \operatorname{Im}(q_k)$$

Comme q_k est un projecteur, on a $Im(q_k) = Ker(Id - q_k)$.

Ainsi,

$$\forall x \in E, \quad p_i(x) \in \text{Ker}(Id - q_k)$$

C'est-à-dire

$$\forall x \in E, \qquad p_j(x) = q_k \circ p_j(x)$$

où encore $p_j = q_k \circ p_j$.

(b) Soit $j \in [1, k]$ et $x \in E$, on a

$$\begin{aligned} p_j(x) &= q_k \circ p_j(x) \\ &= \sum_{i=1}^k p_i \circ p_j(x) \\ &= p_j \circ p_j(x) + \sum_{\substack{i=1\\i \neq j}}^k p_i \left(p_j(x) \right) \\ &= p_j(x) + \sum_{\substack{i=1\\i \neq j}}^k p_i \left(p_j(x) \right) \end{aligned}$$

Ainsi
$$\sum_{\substack{i=1\\i\neq j}}^{k} p_i \left(p_j(x) \right) = 0.$$

On a donc montré que

$$\forall j \in [1, k], \quad \forall x \in E, \qquad \sum_{\substack{i=1\\i \neq j}}^{k} p_i \left(p_j(x) \right) = 0$$

(c) Soit $x \in E$, d'après la question précédente on a

$$\underbrace{p_1(p_j(x))}_{\in \operatorname{Im}(p_1)} + \underbrace{p_2(p_j(x))}_{\in \operatorname{Im}(p_2)} + \ldots + \underbrace{p_{j-1}(p_j(x))}_{\in \operatorname{Im}(p_{j-1})} + \underbrace{0_E}_{\in \operatorname{Im}(p_j)} + \underbrace{p_{j+1}(p_j(x))}_{\in \operatorname{Im}(p_{j+1})} + \ldots + \underbrace{p_k(p_j(x))}_{\in \operatorname{Im}(p_k)} = 0_E$$

et

$$\underbrace{0_E}_{\in \mathrm{Im}(p_1)} + \underbrace{0_E}_{\in \mathrm{Im}(p_2)} + \ldots + \underbrace{0_E}_{\in \mathrm{Im}(p_{j-1})} + \underbrace{0_E}_{\in \mathrm{Im}(p_j)} + \underbrace{0_E}_{\in \mathrm{Im}(p_{j+1})} + \ldots + \underbrace{0_E}_{\in \mathrm{Im}(p_k)} = 0_E$$

Or la somme $\text{Im}(p_1) + \ldots + \text{Im}(p_k)$ est une somme directe, ainsi, par unicité de la décomposition dans une somme directe, on en déduit que

$$\forall x \in E, \quad \forall i \in [1, k], \qquad j \neq i \Rightarrow p_i \circ p_j(x) = 0$$

Ainsi

Pour tout couple
$$(i,j)$$
 de $[\![1,k]\!]^2$ tel que $i\neq j,$ on a $p_i\circ p_j=0_{\mathcal{L}(E)}.$

4. On a montré à la question 3 que, si pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$ alors q_k est un projecteur.

On vient de montrer que, si q_k est un projecteur alors, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$.

En conclusion

 q_k est un projecteur si et seulement si pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$.